

RoadMap Workshop

Wind-driven Dust and Sand transport. Merrison (AU)

Co-funded by the Horizon 2020 programme of the European Union

16/9/2023

>>

R. A. Bagnold The Physics of Blown Sand and Desert Dunes (1941)

Greeley and Iversen Wind as a Geological process (1985)

Pye and Tsoar Aeolian sand and sand dunes (1990)

Terrestial type environments (comparative planetology)

Earth, Mars, Venus, and Titan (Surface – Atmosphere)

Comparative Planetology; Dust Aerosols.

Courtesy NASA/JPL-Caltech

5

Most dynamic factor affecting the surface/atmosphere

6

Sand Dunes on Mars (ancient)

Mars!!!

Sand Transport (Sullivan, R.J. et al., JGR 2008)

NASA/JPL/MGS/Malin Space Science Systems

Wind driven Ash transport

Martian surface = volcanic sand /dust + Aeolain transport

Mars: Current Aeolian (Erosion) Activity)

Co-funded by the Horizon 2020 programme of the European Union

10

Wind driven processes; saltating sand:

Ripples, Dunes, Abrasion (ventifacts), dust transport

11

Conventional Boundary Layer Model

12

Surface Shear Stress = $F/A = \rho U_*^2$

Co-funded by the Horizon 2020 programme of the European Union

U_{*} = Friction Velocity

Turbulent Boundary (sub) Layer

$$U = 2.5U_* \ln(\frac{\rho U_*^2}{\mu}Z) + 5.1U_*$$

Viscous Boundary (sub) Layer

$$U = \frac{\rho U_*^2}{\prime\prime} Z$$

Computational Fluid Dynamic: CFD Modeling

Dv

Dρ

Dt

Finite Element Analysis (Computational Grid)

Navier-Stokes Equations

(momentum conservation i.e. Newtons 2nd law [moving gas parcel, ideal gas law]

+ Conservation E and mass;

13

Co-funded by the Horizon 2020 programme of the European Union

 $\frac{Dv}{Dt} = -\frac{1}{\rho}\nabla P + g_p + v_V \nabla^2 v$

-ρ∇.v

Computational Fluid Dynamic: CFD Modeling

Injecting individual dust grains

15

RoadMap

Aerodynamic drag

Molecular drag Viscous drag Turbulent drag

Detachment Threshold: Force Balance Equation

$F_{lift} + F_{Torque} = F_g + F_{adh}$

Gravity: Drag lift and Torque: Adhesion: Not easily independently varied in the lab. Empirically determined, poorly defined (power law fit) Not known

Saltation (sand)

Old models

Analytical, Dimensionless analysis; Feedback Layer

Modern ideas

Computational (CFD, Stochastics) Transport rates, Trajectories Threshold (do we need one???)

Saltation Transport Rate

Non-Erodable bed

Erodable bed

RoadMan

22

Saltating grain trajectories; high speed imaging

23

24

Saltation – new measurements

Not fitting the model at low pressure – new regime of transport on Mars!!!

Andreotti et al. PNAS 2021, LPS Paris, France

25

Saltation threshold; laser sheet + microscope

26

Ripple migration; time lapse

Ripple length and speed do fit the model

27

Ripple migration; microscope time lapse

28

RoadMa

Field Experiments

30

Co-fund

Co-funded by the Horizon 2020 programme of the European Union

31

32

Figure 3-31: Pancam image of the Spirit Capture and Filter magnets and optical reflectance spectra from the two magnets. [5]

Planetary Environmental Simulator(s)

AARHUS UNIVERSITET

Facility (2009)

 \cap

Facility (Since 2000)

Jens Jacob Iversen Jon Merrison Keld R Rasmussun

Planetary Environmental Simulator(s)

Pressure 0.02-1000 mbar (Mars 10mbar), Gas (Air, CO_2 , N_2 ,)

Temperature (100K – 350K) [Humidity control]

Wind speed 1 - 40m/s

Dust aerosol ≈ 1-1000 cm⁻³ Sand transport

Vol. (2m x 8m x 1m)

DET NATURVIDENSKABELIGE FAKULTET AARHUS UNIVERSITET

Dust Aerosolization; Opacity sensor + LDV

ROADMAP project – wind tunnel studies Dust remobilization

DOWNWIND Resuspension LDV, opacity UPWIND: Dust Removal (web cameras)

36

ROADMAP project – wind tunnel studies A 'wind tunnel' on Mars

Photo from NASA opportunity rover

ROADMAP project – direct dust remobilization

- Cannot remove thin dust layer !!!!!
- Direct Remobilization / Resuspension

38

Threshold / flux(u*)

-JSC-1 MGS-1 MMS-2

35

30

ROADMAP project – direct dust (analogue) remobilization

Direct Dust Remobilization (MMS-2, Martian conditions)

39

ROADMAP project – first direct dust remobilization

ROADMAP project – saltation induced dust remobilization

Low pressure Saltation – sand suspension !!! Simple modelling – monte-carlo single particle tracking

41

ROADMAP project – saltation abrasion generated dust

First saltation induced abrasion observed (in windtunnel)

42

ROADMAP project – followup

Future

- New saltation Experiments (several groups)
- New dust resuspension Experiments (few groups)
- Experiments Relating tansport rates to abrasion rates (dust generation)

43

- Computational models (CFD, Monte Carlo, etc..)
- Turbulent models (stochastics)
- New physical models (less empirical)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 101004052.

THANK YOU! MORE INFO?

roadmap.aeronomie.be

roadmap@aeronomie.be

45

End

AU Team

Jon Merrison Andebo Waza Jens Jacob Iversen Keld Rasmussen Rikke Sinding

Task 2.2: Dust resuspension/Aerosolization

Task 2.3: Aerosol dynamics (electrification)

Task 2.4: Aerosol deposition

