Aerosols climatology by NOMAD UVIS

Roadmap workshop Zachary Flimon

UNIVERSITÉ LIBRE DE BRUXELLES

Royal Belgian Institute for Space Aeronomy

Aerosols on Mars

•IASB

3 aerosols in the atmosphere :

- H₂O ice
- CO₂ ice
- Dust

Credit : http://wwwmars.lmd.jussieu.fr/mars/time/solar_longitude.html • Dust is present all around the planet

Credit : NASA James Bell (Cornell Univ.), Michael Wolff (Space Science Inst.), and The Hubble Heritage Team (<u>STScI/AURA</u>)

Credit : Phil James (Univ. Toledo), Todd Clancy (Space Science Inst., Boulder, CO), Steve Lee (Univ. Colorado), and <u>NASA/ESA</u> from Hubble Space Telescope WFPC2

Credit : http://wwwmars.lmd.jussieu.fr/mars/time/solar_longitude.html

Transmittance computed from Trompet et al., 2016 Removal of ozone from Piccialli et al., 2023

From extinction to size

• $\beta = n * C_{ext}$ with β the extinction, n the number density and C_{ext} the extinction cross section

Cross section dependency:

- Shape → In occultation only sensitive to the forward scattering, no sensitivity for the shape we
 assumed spherical shape for simpler computation
- Size \rightarrow Lognormal distribution (r_{eff}: 0.05-2 μ m and v_{eff}: 0.1) from Hansen et al., 1974

The cross section is computed for all r_{eff} and $v_{eff} \rightarrow$ we fit the cross section to the extinction with a least square algorithms and choose the best reduced chi square

From extinction to size

• $\beta = n * C_{ext}$ with β the extinction, n the number density and C_{ext} the extinction cross section

Cross section dependency:

- Shape → In occultation only sensitive to the forward scattering, no sensitivity for the shape we
 assumed spherical shape for simpler computation
- Size \rightarrow Lognormal distribution (r_{eff}: 0.05-2 micron and v_{eff}: 0.1) from Hansen et al., 1974

The cross section is computed for all r_{eff} and $v_{eff} \rightarrow$ fit with least square to find the best combination

• Composition \rightarrow No sensitivity in the UV-Visible between Martian dust and Ice

Detection of water ice clouds

Latitude : 30° – 40°N

 $L_{s}: 270^{\circ} - 280^{\circ}$

Averaged MCS profiles

UVIS profiles

Extinction is the mean between 320 and 360 nm

Dust Climatology : All regions

Dust Climatology : All regions

Zachary Flimon 15

Dust Climatology : All regions

Water vapor profiles from Aoki et al., 2022 using the NOMAD SO channel

Water vapor profiles from Aoki et al., 2022 using the NOMAD SO channel

Summary

- No spectral differentiation between dust and ice in the UV-Visible
- They are seasonal and latitudinal variation for the aerosols
- Dust storm can be detected by the altitude or the particle size
- Link between the water vapor and the aerosols

